The influence of catabolic reactions on polyamine excretion.
نویسندگان
چکیده
Complete inhibition of polyamine catabolism is possible by combined administration of two compounds. Aminoguanidine (25 mg/kg body wt., intraperitoneally) inhibits all reactions that are catalysed by copper-containing amine oxidases (CuAO). The products of the CuAO-catalysed reactions cannot be reconverted into polyamines (terminal catabolism) and therefore usually escape observation. N1-Methyl-N2-(buta-2,3-dienyl)butane-1,4-diamine (MDL 72521) is a new inhibitor of polyamine oxidase. It inhibits completely the degradation of N1-acetylspermidine and N1-acetylspermine. The enhanced excretion of N1-acetylspermidine in urine after administration of 20 mg of MDL 72521/day per kg body wt. is a measure of the rate of spermidine degradation in vivo to putrescine, and thus of the quantitative significance of the interconversion pathway. From the enhancement of total polyamine excretion by aminoguanidine-treated rats, one can calculate that only about 40% of the polyamines that are destined for elimination are usually observed in the urine, the other 60% being catabolized along the CuAO-catalysed pathways. The normally observed urinary polyamine pattern gives, therefore, an unsatisfactory picture of the actual polyamine elimination. Although aminoguanidine alone is sufficient to block terminal polyamine catabolism, rats that were treated with a combination of aminoguanidine and MDL 72521 excrete more polyamines than those that received aminoguanidine alone. The reason is that a certain proportion of putrescine, which is formed by degradation of spermidine, is normally reutilized for polyamine biosynthesis. In MDL 72521-treated animals this proportion appears in the urine in the form of N1-acetylspermidine. Thus it is possible to determine polyamine interconversion and re-utilization in vivo and to establish a polyamine balance in intact rats by using specific inhibitors of the CuAO and of polyamine oxidase.
منابع مشابه
Polyamines in living organisms
Natural polyamines, putrescine, spermidine and spermine are ubiquitous cell components essential for normal cellular functions and growth. Chemically these compounds are very simple organic aliphatic cations and fully protonated under physiological conditions. There is a strong correlation between proliferation rate of the cells and their polyamine contents. Adjustments of intracellular concent...
متن کاملPolyamine metabolism and colorectal cancer 3. Influence of drugs on polyamine metabolism for CRC chemoprevention 4. Influence of nutritional factors on polyamine metabolism for CRC chemoprevention 5. Influence of dietary polyamines on CRC chemoprevention
Chemoprevention is the long-term use of different chemical agents, both synthetic and natural, to prevent or delay the onset of disease. Since colorectal cancer has a significant environmental component, it is an ideal disease in which to evaluate the potential benefits of chemopreventive agents. The polyamines, spermine, spermidine and putrescine have been involved in almost all the steps of c...
متن کاملPolyamines in clinical and basic science: introductory remarks.
The most commonly occurring of the natural polyamines are putrescine [ Nl ll(CI ll),N14?, a diaminel, spermidine [ Nl 12(C€12)3Nl l(C142),NIIl. a triamine] and spermine [ Nl il(Cl 12);NI l(C€Il),N€I(CI 1?)?NI ?. a tetramine]. One or more of these compounds are present in every living cell. All are found in eukaryotes; spermine is absent from most prokaryotes. The polyamines are essential for ce...
متن کاملPolyamine catabolism and disease.
In addition to polyamine homoeostasis, it has become increasingly clear that polyamine catabolism can play a dominant role in drug response, apoptosis and the response to stressful stimuli, and contribute to the aetiology of several pathological states, including cancer. The highly inducible enzymes SSAT (spermidine/spermine N1-acetyltransferase) and SMO (spermine oxidase) and the generally con...
متن کاملNitric oxide ameliorates salinity tolerance in Pyrodwarf pear (Pyrus communis) rootstocks by regulating polyamine content
Nitric oxide (NO), an endogenous signaling molecule, is involved in various physiological processes and stress responses in plants. In the present research, Pyrodwarf pear (Pyrus communis) rootstocks were grown by nutrient solution to investigate the effects of sodium nitroprusside (SNP) application as an NO donor at 0, 0.1, 0.5, and 1 mM levels on plant stress tolerance, content of ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 225 1 شماره
صفحات -
تاریخ انتشار 1985